E-Z EXCAVATING LLC.

2358 HWY# 23 MORA MN. 55051 Ph. 320-679-4031 Cell 320-241-7036

PRESSURE BED DESIGN

OWNER: MILLE LACS BAND OF OJIBWE

LOCATION:

Parcel ID

030430001

Property Address

30910 EAGLE FEATHER DR

HINCKLEY MN.

Sec/Twp/Rng

35-041-020

Brief Tax Description Sect-35 Twp-041 Range-020 6.09 AC THAT PART OF NORTHEAST 1/4 OF NORTHEAST 1/4 DESC AS COM AT NE CORNER; THENCE SOUTH 915 FT TO PT OF BEG; THENCE WEST 660 FT; THENCE SOUTH 402.4 FT; THENCE EAST 660 FT; THENCE NORTH 402.4 FT TO POINT OF BEGINNING & THERE TERM

SYSTEM TYPE: TYPE 1 PRESSURE BED

DESIGN FLOW: 5 BEDROOM DESIGNED @ 750 GPD

TREATMENT AREA:

962 SQ.FT.

BED SIZE: 20' X 48.1'

SLOPE: 5 %

SEPTIC TANK: 2500 CEMSTONE SPLIT **FILTER:** POLYLOK PL-122 WITH ALARM

PUMP TANK: 1000 CEMSTONE

PUMP: GOULDS WE0511H

FLOW METER: SJE-RHOMBUS AB DUO W/EVENT

COUNTER

KEVIN HERWIG M.P.C.A. 1472

CONSTRUCTION NOTES

PRODUCT BRAND & MODEL LISTED IN DESIGN MUST BE USED. (CEMSTONE TANKS –1 SEPTIC 2500 GAL. COMBO(#9552501) W/ POLYLOK PL-122 FILTER WITH ALARM, 1-PUMP TANK 1000 GAL.(#9551001) PUMP – GOULDS WE0511H)** PUMP CHAMBER AND PUMP SETTINGS WILL NOT BE CORRECT IF OTHER PRODUCTS ARE USED.

SJE RHOMBUS AB DUO CONTROL WITH EVENT COUNTER(POLYLOC FILTER PL-122 WITH ALARM)

IT IS THE DESIGNERS DISCRETION TO APPROVE OR DISAPPROVE SUBSTITUTIONS. THE INSTALLER WILL BE RESPONSIBLE FOR DESIGN CHANGE FEE.

ALL PRODUCTS AND CONSTRUCTION PRACTICES
ARE TO MEET M.P.C.A. 7080 RULE AND MILLE LACS
BAND SPECIFICATION FOR SEWAGE TREATMENT
SYSTEMS

Jun Howing

Preliminary Evaluation Worksheet

1. Contact Information v 04.01.2020									
Property Owner/Client: MILLE LACS BAND OF OJIBWE Date Completed: 9/25/202	20								
Site Address: 30910 EAGLE FEATHER DR HINCKLEY MN. Project ID:									
Email: Phone:	=								
Mailing Address: 43408 OoDENA DR. ONAIMA MN	==								
Legal Description:									
Parcel ID: 030430001 SEC: 35 TWP: 041 RNG: 02	0								
2. Flow and General System Information									
A. Client-Provided Information Project Type: New Construction Replacement Expansion Repair									
Project Use: Residential Other Establishment: HOME REPLACEMENT									
Residential use: # Bedrooms: 5 Dwelling Sq.ft.: Unfinished Sq. Ft.:	=								
# Adults: # Children: # Teenagers:									
In-home business (Y/N): If yes, describe:									
Garbage Disposal/Grinder Dishwasher Hot Tub* Water-using devices: Sewage pump in basement Water Softener* Sump Pump* (check all that apply) Large Bathtub >40 gallons Iron Filter* Self-Cleaning Humidifier* Clothes Washing Machine High Eff. Furnace* Other: * Clear water source - should not go into system									
Additional current or future uses:									
Anticipated non-domestic waste:									
The above is complete & accurate:									
Client signature & date B. Designer-determined flow Information Attach additional information as necessary.									
· · · · · · · · · · · · · · · · · · ·									
Design Flow: 750 GPD Anticipated Waste Type: Residential									
	ng/L								
3. Preliminary Site Information									
A. Water Supply Wells									
# Description Well Depth Casing Confining STA # Description Mn. ID# (ft.) Depth (ft.) Layer Setback Source									
1 WELL >50' OWNER									
2									
3									
4									
Additional Well Information: NO WELLS WITHIN 50									

Preliminary Evaluation Worksheet

	Sit	te within 200)' of noncom	munity trar	rsient well (Y/N)	No		Yes, source:		
	Site wit	thin a drinking	ig water sup	ply manage	ment area (Y/N)	No		Yes, source:		
Site ir	n Well Head	d Protection i	inner wellhe	ad manage	ment zone ((N/Y,	No		Yes, source:		
В	uried water	r supply pipe:	s within 50	ft of propos	sed system (Y/N)	No				
	B. Site loca	ated in a sho	reland distr	rict/area?			No		Yes, name:		
		Ele	evation of orc	dinary high	water level	:		ft	Source:		
	Classifica	ation:			Tank Se	tback	:	ft.	STA Setbk:	1	ft.
	C. Site loca	ated in a floo	odplain?				No		Yes, Type(s):	N/A	$\overline{}$
		Floodpla	ain designatio	on/elevatic	on (10 Year)	:	N/A	ft	Source:		
		Floodplair	n designation	n/elevatior	ı (100 Year):	:	N/A	ft	Source:	N/A	
	D. Property	y Line Id / So	ource: 🗵	Owner [Survey	☐ Cc	ounty GIS	— ☐ Pla	at Map 🔲 Other:		
	E. ID distance of relevant setbacks on map: Water Easements Well(s)										
<u></u>					Building(s)		roperty Lines		HWL Other:		
4. Pre	eliminary S	oil Profile In	formation F	rom Web S	oil Survey	(attacl	n map & de	escrip	tion)		
		Map Units:	NONE					7	Slope Range:	%	6
	List	t landforms:									
Landform position(s):											
l	Paren	t materials:									
		Depth to	Bedrock/Res	strictive Fe	ature:		in De	epth t	o Watertable:	i	in
ı		Septic Tan	nk Absorption	ո Field- At- <u>ና</u>	grade:						
	Map Unit Ratings	Septic T	ank Absorpti	ion Field- M	lound:						
_	Septic Tank Absorption Field- Trench:										
5. Local Government Unit Information											
	,	Na	me of LGU:	PINE COU	NTY						
		LG	GU Contact:								
		LGU-specific	c setbacks:								
	LGU-specif	fic design req	quirements:								
LGU-	-specific ins	stallation req	uirements:								
Notes:	 										
Ī											

Field Evaluation Worksheet

1. Project Information						\	v 04.01.2020
Property Owner/Client:	MILLE LACS	BAND OF	OJIBWE		Proj	ect ID:	
Site Address: 30910 EAGL	LE FEATHER [OR HINCKL	EY MN.		Date Com	pleted:	9/25/2020
2. Utility and Structure Info	ormation						
Utility Locations Identified	☑ Gopher State	One Call #			Any Private Utilities:		
Locate and Verify (see Site E	valuation ma	ıp) 🗆	Existing Building	js 🗌 Im	mprovements 🔲 I	Easements	Setbacks
3. Site Information							
Vegetation type(s):		Lawn		Lands	scape position:	Shoulde	er
Percent slope: 5	%	Slop€	e shape: Line	ear, Linea	r Slope direction	: south	west
Describe the flooding or I	run-on poten	tial of site	e: NONE				
Describe the need for Typ	pe III or Type	: IV system	n:			· · · · · · · · · · · · · · · · · · ·	
Note:							
Proposed soil treatment	t area protec	ted? (Y/N):	If	yes, describe:		
4. General Soils Information	1						
Filled, Compacted, Disturbe	ed areas (Y/N	1):	No]	-		
If yes, describe:							
Soil observations were conducted in the proposed system location (Y/N): Yes							
A soil observation in the most limiting area of the proposed system (Y/N): Yes							
Number of soil ob	oservations:	3	S	oil observa	ation logs attached	(Y/N):	Yes
Percolation tests performed & attached (Y/N): No							
5. Phase I. Reporting Information							
	Depth		Elevation				
Limiting Condition*:	60 i	in	92.1	ft *Mo.	ost Restrictive Depth I	dentified fr	om List Below
Periodically saturated soil:	NA i	in		ft	Soil Texture:	medium	sandy loam
Standing water:	NA i	in		ft	Percolation Rate:		min/inch
Bedrock:	NA i	in		ft Soi	il Hyd Loading Rate:	0.78	gpd/ft²
Benchmark Elevation:	100.0	ft	Elevat	ions and B	Benchmark on map?	(Y/N):	Yes
Benchmark Elevation Location	TOP O	F WELL C	AP NW OF BED)			
Differences between soil surve	ey and field e	evaluation	1:				
Site evaluat	tion issues / o	comments	ş:				
Anticipated construction is	ssues:						
						- -	

**				
University of Minnesota	ONSITE	SEWAGE	FREATMENT	PROGRAM

Soil Observation Log

Project ID:

v 04.01.2020

93.2 98.2 Consistence 30910 EAGLE FEATHER DR HINCKLEY MN. Friable Friable 9/24/2020 Loose (Date) Elevation-relative to benchmark: Limiting Layer Elevation: 09/24/20 Organic Matter 돮 Structureless Grade Weak Weak ☐ Bedrock Date Single grain Observation Type: Shape Granular (License #) Blocky 1472 Linear, Linear Alluvium ocation / Address: hereby certify that I have completed this work in accordance with all applicable ordinances, rules and laws. Indicator(s) 三 [] Slope shape Redox Kind(s) ☐ Loess U Outwash U Lacustrine N. CENTER Soil survey map units: Signature) Mottle Color(s) 5.0 Slope %: OVERCAST MILLE LACS BAND OF OJIBWE Matrix Color(s) Shoulder 7.5YR 4/4 10YR 3/3 2.5Y 3/4 Soil parent material(s): (Check all that apply) Rock Frag. % <35% <35% <35% Weather Conditions/Time of Day: Landscape Position: (select one) Lawn (Designer/Inspector) Observation #/Location: Sandy Loam Sandy Loam **KEVIN HERWIG** Texture Sand Vegetation: Depth (in) Comments 24-66 9-24 6-0 Client:

University of Marketon	Sewage Treatment	PROGRAM

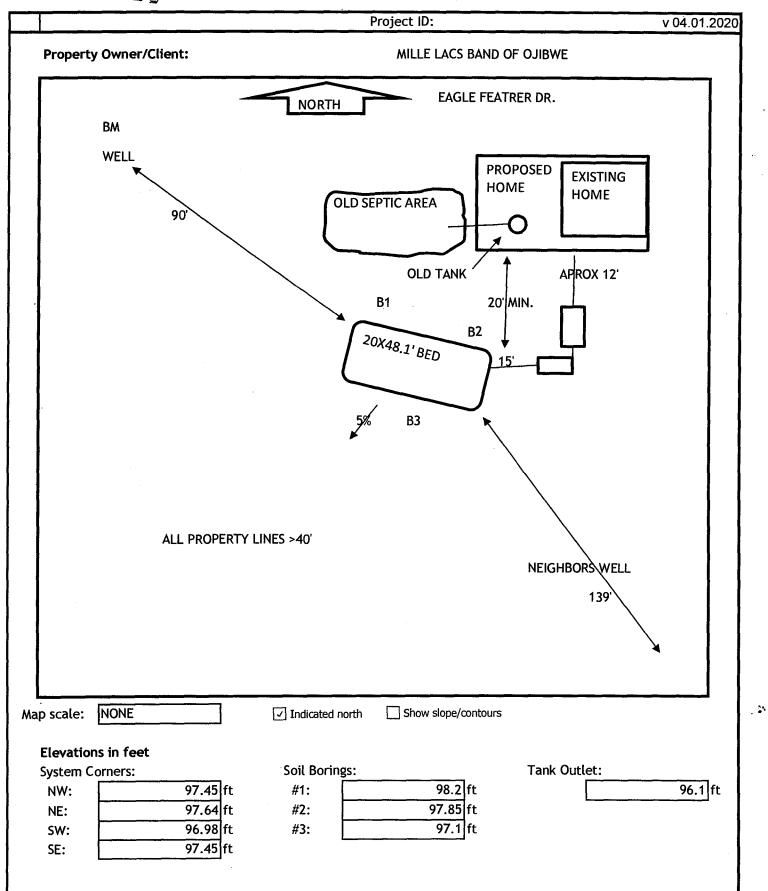
Soil Observation Log

Project ID:

)	Project ID:			v 04.01.2020	
Client:		MILLE	MILLE LACS BAND OF OJIBWI	\allo	WE	Locat	Location / Address:	1450	AGLE FEATHER	30910 EAGLE FEATHER DR HINCKLEY MN.	7.1.3
Soil parent material(s): (Check all that apply)	erial(s): (Cl	heck all t	hat apply)		Uutwash 🔲 Lacustrine	ine Loess 🗸 Till	Tili 🔲 Alluvium	vium 🔲 Bedrock		Organic Matter	85
Landscape Position: (select one)	ion: (selec	t one)	Shoulder		Slope %: 5.0	Slope shape		Linear, Linear	Elevation	Elevation-relative to 97.9	
Vegetation:		Lawn		Soils	Soil survey map units:		NONE		Limiting Layer Elevation:		_
Weather Conditions/Time of Day:	ons/Time	of Day:		OVERCAST	AST	9:30 AM	3	Date			T
Observation #/Location:	Location:		2		ய் Ż		opsk	Observation Type:			· .
Depth (in)	Texture	Rock Frag. %	Matrix Color(s)	r(s)	Mottle Color(s)	Redox Kind(s)	Indicator(s)		Strücture-		. 100.000
0,0		òic	10YR 3/3	1				Suape	Grade	Consistence	NO. 27 11
	Sandy Loam	<35%						Granular	Weak	Friable	
10-24	meo I vibue)	,3E0/	7.5YR 4/4								- 1
	ray roalii	%CC/						Blocky	Weak	Friable	
24-66	Cand	70⊒€	2.57 3/4								
	ם פרום פרום	%CC\						Single grain	Structureless	esoo_	
	:										
											_
Comments											
hereby certify th	at I have co	ompleted	this work in ac	corda	nce with all appli	hereby certify that I have completed this work in accordance with all applicable ordinances, rules and laws.	ules and laws.				
KEVIN	KEVIN HERWIG	:	J	1/2 / 1/2		M. W.		1472	* · · · · · ·	0/24/2020	
(Designer	(Designer/Inspector)				(Signature)			(License #)		(Date)	

Diversity of Massegora Consiste Sewage TREATMENT PROGRAM	

Soil Observation Log


Project ID:

v 04.01.2020

Client		A11 1 E 1	All I E I ACE BAND OF CHIBWE				2.3%		1 31:0:02
					Locati	Location / Address:		EAGLE FEATHER I	30910 EAGLE FEATHER DR HINCKLEY MN.
Soil parent	Soil parent material(s): (Check all that apply)	heck all t		Outwash Lacustrine	Loess TIII	Till Alluvium	ium Bedrock		Organic Matter
Landscape F	Landscape Position: (select one)	t one)	Shoulder	Slope %: 5.0	Slope shape		Linear, Linear		Elevation-relative to 97 1
Vegetation:		Lawn	Soil	Soil survey map units:		NON NON		Limiting I aver Flevation:	
Weather Co	Weather Conditions/Time of Day:	of Day:	OVEF	OVERCAST	9:30 AM	*	Date		
Observatic	Observation #/Location:			ш Х		e opse	Observation Type:		
Depth (in)	Texture	Rock Frag. %	Matrix Color(s)	Mottle Color(s)	Redox Kind(s)	Indicator(s)		Structure	1
							Shape	Grade	Consistence
6-0	Sandy Loam	<35%	10YR 3/3						
4							Granular	Weak	Friable
9-20	Sandy Loam	, 3 5%	7.5YR 4/4						
		200					Blocky	Weak	Friable
20-60	PueS	735%	2.5Y 3/4						
	2	RCC.					Single grain	Structureless	Foose
	***************************************							:	
Comments									
I hereby certi	fy that I have co	mpleted	this work in accord	hereby certify that I have completed this work in accordance with all applicable ordinances, rules and laws	ble ordinances ru	alles and laws			
KE	KEVIN HERWIG			The state of the s	· A		1472		060617610
(Desi	(Designer/Inspector)			(Signature)		t	(l icense #)		10-4-01
							(= CC1 3C #)		(Date)

Proposed Design Map

Proposed Design Map

		Project ID:	v 04.01.2020
Property Owner/Client:	,	MILLE LACS BAND OF OJIBWE	
Mapping Checklist			
·			
Locate	Easements	Setbacks	
Lot Dimensions/Property Lines	Phone	✓ Building	
Dwellings and Other Improvements	☐ Electric	✓ All water wells within 100 feet	
Existing or Proposed System(s)	Gas	Pressure Pipe	
Replacement Area	Elevations	Water Suction	
Unsuitable Area(s)	✓ Benchmark	Streams, Lakes	
Public Water Supply Wells	✓ Borings	Floodway and Fringe	
Pumping Access	Perc Tests		
☐ Inner Wellhead Zone	☐ Horizontal and Vertical	Reference Points	
,			
Comments:			
· :			
	····		
			İ
			ĺ
			6
		•	

Design Summary Page

1. PROJECT INFORMATION						v 04.01.2020		
Property Owner/Client: MILLE LAC	S BAND OF	OJIBWE			Project ID:			
Site Address: 30910 EAG	GLE FEATHE	R DR HIN	ICKLEY MN		Date:	09/25/20	\exists	
Email Address:					Phone:			
2. DESIGN FLOW & WASTE STRENGTH	Attacl	h data / es	timate basi	s for Other Establi	shments			
Design Flow:	750	GPD		Anticipated	Waste Type:	Residential	$\overline{}$	
BOD:	<170	mg/L 1	ΓSS: <6	60 mg/L	Oil & Grease:	<25 m	g/L	
Treatment Level:		Select Tr	eatment Lev	 ∕el C for residentia	l septic tank effl	uent		
3. HOLDING TANK SIZING								
Minimum Capacity: Residential =400 ga	l/bedroom, C	Other Esta	ıblishment :	= Design Flow x 5.	0, Minimum siz	e 1000 gallons		
Code Minimum Holding Tank Capacity:		Gallons	in	Tan	ks or Compart	ments		
Recommended Holding Tank Capacity:		Gallons	in	Tan	ks or Compart	ments		
Type of High Level Alarm:				(Set	@ 75% tank c	apacity)		
Comments:								
4. SEPTIC TANK SIZING							``	
A. Residential dwellings:		**************************************	Miller, (1911) (1984) (1994) (1994) (1994) (1994) (1994) (1994) (1994)		nning geographismikessausetta takattikala katal	***************************************	***************************************	
Number of Bedrooms (Residential):	5	_						
Code Minimum Septic Tank Capacity:	1500	Gallons	in	1 Tan	ks or Compart	ments	***************************************	
Recommended Septic Tank Capacity: 2500 Gallons in 2 Tanks or Compartments								
Effluent Screen & Alarm (Y/N): Yes Model/Type: POLYLOK PL-122								
B. Other Establishments:								
Waste received by:				GPD x	Days Hyd. R	etention Time		
Code Minimum Septic Tank Capacity:		Gallons	In [Tan	ks or Compart	ments		
Recommended Septic Tank Capacity: Gallons In Tanks or Compartments								
Effluent Screen & Alarm (Y/N):		Mod	del/Type:	on programme and the second				
5. PUMP TANK SIZING								
Pump Tank 1 Capacity (Minimum):	750	Gal	Pump	Tank 2 Capacit	y (Minimum):	Ga	al	
Pump Tank 1 Capacity (Recommended):	1000]Gal F	oump Tank	c 2 Capacity (Red	commended):	Ga	al	
Pump 1 47.0 GPM Total Head	13.0]ft	Pump 2	GPM	Total Head	ft		
Supply Pipe Dia. 2.00 in Dose Vol:	187.0	gal S	Supply Pipe	e Dia.	Dose Vol:	Ga	al	
		III PAGE						

Design Summary Page

6. SYSTEM AND DIST	RIBUTION TYPE	F	roject ID:					
Soil Treatment Type:	Bed] Di	stribution Type:	Pressure Distribution-	Level			
Elevation Benchmark:	100	ft Bench	mark Location:	TOP OF WELL CAP NW	OF BED			
MPCA System Type:	Type I	Dis	tribution Media:	Rock		ĺ		
Type III/IV Details:						<u> </u>		
7. SITE EVALUATION	SUMMARY:					·		
Describe Limiting Condit	ion: Depth of	Observation				100		
Layers with >35% Rock		es/no) No If yes		: % rock and layer thick	ness, amour	it of		
Note:	additional inform	lactor for addressing	the rock fragmen	its in this design.		Haracan and American and Americ		
		D1	P*1	(1: :: 6 1::		374111		
Limiting Condit	Depth ion: 60	Depth inches 5.0 ft	· · · · · · · · · · · · · · · · · · ·	f Limiting Condition ft				
Minimum Req'd Separat		inches 3.0 ft		ו Critical for syste	m complian	ıce		
Code Max System Dep		inches 2.0 ft	Lievation	lft	,			
This is the maximimum depth to		J <u>L</u> i		1	nust be a mou	nd.		
Soil Texture:	Sa	ndy Loam						
Soil Hyd. Loading Ra	pading Rate: 0.78 GPD/ft ² Percolation Rate: MPI							
Contour Loading Ra	ate:	Note:						
Measured Land Slope: 5.0 % Note:								
Comments:								
8. SOIL TREATMENT AREA DESIGN SUMMARY								
Trench:				Γ				
Dispersal Area	ft ²	Sidewall Depth	in	Trench Width		ft		
Total Lineal Feet	ft	No. of Trenches		Code Max. Trench Depth		in		
Contour Loading Rate	ft	Length	ft	Designed Trench Depth		in		
Bed:								
Dispersal Area	962 ft ²	Sidewall Depth	6.0 in	Maximum Bed Depth		in		
Bed Width	20 ft	Bed Length	48.1 ft	Designed Bed Depth	20.0	in		
Mound: Dispersal Area		Bed Length	ft	Bed Width		ft		
Absorption Width	ft	Clean Sand Lift	ft	Berm Width (0-1%)		ft		
Upslope Berm Width	ft	Downslope Berm	ft	Endslope Berm Width		ft		
· \	ft	System Width	ft	Contour Loading Rate		: }		
Total System Length		System width		Contour Loading Kate		gal/ft		

Design Summary Page

	Project ID:									
At-Grade:			•							
	Bed Width		ft	Bed Length		ft	Finished I	leight ft		
Contour L	oading Rate		gal/ft U	oslope Berm		ft	Downslope	Berm ft		
Enc	islope Berm		ft Sy:	stem Length		ft	System	Width ft		
i i	ual Pressure		7			า				
No.	of Laterals	7	Perfora	tion Spacing	3	ft Per	foration Dia	meter 3/16 in		
Later	al Diameter	2.00	in Min [ose Volume	186	gal	Max Dose V	olume 188 gal		
Non-Level	and Unequa	l Pressure I	Distribution							
	Elevation (ft)	Pipe Size (in)	Pipe Volume (gal/ft)	Pipe Length (ft)	Perf Size (in)	Spacing (ft)	Spacing (in)	Minimum Dose		
Lateral 1			(944.14)					Volume		
Lateral 2								gal		
Lateral 3										
Lateral 4								Maximum Dose		
Lateral 5								Volume		
Lateral 6							<u> </u>	gal		
9. Additional Info for At-Risk, HSW or Type IV Design										
A. Starting BOD Concentration = Design Flow X Starting BOD (mg/L) X 8.35 ÷ 1,000,000										
gpd X mg/L X 8.35 ÷ 1,000,00 = lbs. BOD/day										
B. Target BOD Concentration = Design Flow X Target BOD (mg/L) X 8.35 ÷ 1,000,000										
gpd X mg/L X 8.35 ÷ 1,000,00 = lbs. BOD/day										
Lbs. BOD To Be Removed:										
Pre	PreTreatment Technology: *Must Meet or Exceed Target									
D	isinfection 7	Technology:					*Requ	rired for Levels A & B		
C. Organic Loading to Soil Treatment Area:										
	mg/L	х	gpd	x 8.35 ÷ 1,0	00,000 ÷		ft ² =	lbs./day/ft²		
10. Comm	nents/Specia	al Design Co	onsideration	ıs:						
I here	by certify th	at I have co	mpleted thi	s work in ac	cordance w	ith all applic	able ordinar	nces, rules and laws.		
K	EVIN HERWI	G	Tu	ik X	notes		1472	9/25/2020		
	(Designer)		/ [Signatui	re)	(L	icense #)	(Date)		

Bed Design Worksheet

1.	SYSTEM SIZING:	Project ID:	v 04.01.2020
A.	Design Flow:	750	GPD
В.	Code Maximum Depth:	24	inches Designers Maximum Depth: 20 inches
C.	Soil Loading Rate:	0.78	GPD/ft ²
D.	Required Bottom Area: Design Flo	•	
	750 GPD ÷ 0.78	GPD/ft ² =	962 ft ²
E.	Select Distribution Method:	Pressure	Notes:
F.	Select Dispersal Media:	Rock	Product:
G.	If distribution media is installed in	contact with	h sand or loamy sand or with a percolation rate of 0.1 to 5 mpi
	indicate distribution or treatment	method:	
2.	BED CONFIGURATION: (for sites v	vith less than	n 6% slope)
A.	Select size Multiplier: 1	.0	1.0 = pressurized or 1.5 = gravity
В.	Req'd Bottom Area = Bottom Area	X Size Multipl	lier =
	961.5 ft ² X 1	.0 =	962 ft ²
C.	Designed Bottom Area:	ft ²	Optional upsizing of bed area
D.	Select Bed Width: 2	0 ft	
E.	Calculate Bed Length: Designed Bo	ottom Area ÷	Bed Width = Bed Length
	90	52 ft ² ÷	20.0 ft = 48.1 ft
3.	MATERIAL CALCULATION: ROCK		
Α.	If drainfield rock is being used, se	ect sidewall	height
		in	0.50 ft
В.			pipe) X Designed Bottom Area = ft ³
_	(0.50 ft + 0.		$X = 961.5$ $ft^2 = 798$ ft^3
C.	Calculate Volume in cubic yards: A		
_	79		
ł <u>.</u>	MATERIAL CALCULATION: REGIST	ERED PRODU	ICTS - CHAMBERS AND EZFLOW
A.	Registered Product:		Check registered product information for specific
	Component Length:		application details and
C.	Component Width:		ft design
	Component depth (louver or depth		
E.	Number of Components per Row =	Bed Length d	divided by Component Length (Round up)
	ft ÷	ft =	components
F.	Actual Bed Length = Number of Co	mponents X C	Component Length:
	components	x	ft =ft
G.	Number of Rows = Bed Width divid		<u></u>
	ft ÷	ft = [rows Adjust width so this is an whole number.
Н.		mber of Comp	ponents per Row X Number of Rows
	x	=	components

Pressure Distribution Design Worksheet

						Project	ID:					v 0	4.01.2020
1.	Media Bed Widt	h:				Γ	20	ft					
2.	2. Minimum Number of Laterals in system/zone = Rounded up number of [(Media Bed Width - 4) ÷ 3] + 1.												
		[(20	- 4) ÷ 3] +	1 = [7	late	erals	Does	s not app	oly to at	-grades
3. Designer Selected Number of Laterals: Cannot be less than line 2 (Except in at-grades)							7	late	rals				····
4.	Select Perforati			ept in al	-qraues	ľ	3.00	ft		(S): (A)	humane ince		
5.	Select <i>Perforati</i>	on Dian	neter Siz	:e:		Ē	3/16	in	A' periora	nions spaced Y o		our ed erock	尹司
6.	Length of Later	als = Me	edia Bed	Length	- 2 Feet	:		•	Peri		ta is Petro	ation specing 3	to 3'
	48.1	- 2f	't =	46	5.1	ft P	erforation c	an i	not be clo	ser the	n 1 foot	from ec	ige.
7.	Determine the A					Divide	the <i>Length</i> (of L	aterals b	y the P	Perforatio	on Spaci	ing and
	Number of Perf	oration .	Spaces =	46	5.1 1	it	÷ 3	.0	ft	= {	15	Spa	aces
8.	Number of Perfo to verify the nu double with a ce	mber of enter m	perfora anifold.	tions pe	r latera	guaran							
	. Per		ns Per La				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 =			Perfs. Pe	er Latera	al
			imum Hum Perforation		forations P	er Latera	to Guarantee	10%		eriation Inch Perfo	rations		
-		T		Diameter (Inches)		Perforation S	narin			Diameter (I	nches)	
Perf	Perforation Spacing (Feet)		114	11/2	2	3	(Feet)	•	1	114	11/2	2	3
X.75	1	10	13	18	30	60	2		11	16	21	34	68
	21/1	8	12	16	28	54	23/2		10	14	20	32	64
	4	. 8	12	16	25	52	3) 1966	9	14	19	30	60
 		3/16 Inch	Perforation			***************************************	<u> </u>			nch Perfo			
Perf	oration Spacing (Feet)		, , , , , , , , , , , , , , , , , , , 	Diameter (т.	Perforation S	•	_		Diameter (I	, 	
50.500	•	12	114	112	2 46	3 87	(Feet)	1000	21	1¼ 33	193 44	2 74	3 149
<u>\$1898</u>	292	12	17	24	40	80	292		20	30	41	69	135
16839	**	12	16	22	37	75	3		20	29	38	54	128
3.33	<u>.</u>			<u> </u>	33.00			136,775		**	30		
			nanifold pipe	,	from pump		per management of Clean		Manifold pipe	`			ĵ
P.				~じ	. a via pungi	-11/-							
clean o	eurs P				.	1	***************************************				X	Alternate le	ocation
	9			ali	ternate local	ion	A a					of pipe from	
L				of	pipe from p	ump					Pipe fro	m pump	
9.	Total Number of Perforated Later		ations e	quals th	e Numb	er of Pe	erforations p	oer I	Lateral n	nultiplie	d by the	Numbe	r of
	16 Per	rf. Per L	at. X		7	lumber	of Perf. Lat	. =	1	12	Total Nu	mber of	Perf.
10.	Spacing of lat	erals; 1	Must be	greater	than 1 f	oot and	no more th	an 3	feet:	[2.8	ft	
11.	Select Type of M	lanifold	Connec	<i>tion</i> (En	d or Cer	nter):	En	nd					
	Soloct Lateral Di		<i>(c</i> . T				20						

Pressure Distribution Design Worksheet

a. Bed Area = Bed Width (ft) X Bed Length (ft) 20	13.	Calculate the Square Feet per Perforation.		Perforat	ion Dischar	je (GPM)	
a. Bed Area = Bed Width (ft) X Bed Length (ft) 20		Recommended value is 4-11 ft2 per perforation. Does not apply to At-Grades			Perforation	Diameter	
b. Square Foot per Perforation = Bed Area ÷ by the Total Number of Perfs 962	a.		Head (ft)	1/2	3/16	7/32	1/4
b. Square Foot per Perforation = Bed Area ÷ by the Total Number of Perfs 962 ft² ÷			1.0*	0,18	0.41	0.56	0.74
b. Square Foot per Perforation = Bed Area ÷ by the Total Number of Perfs 962 ft² +		20 ft X 48 ft = 962 ft ²					
962 ft² ±		S. S					***************************************
962 ft² ÷ 112 perf = 8.6 ft²/perf 4.0 0.37 0.83 1.13 1.47 1.50 1.60 1.	b.	Square Foot per Perforation = Bed Area ÷ by the Total Number of Perfs	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************		
14. Select Minimum Average Head: 15. Select Perforation Discharge based on Table: 16. Flow Rate = Total Number of Perfs X Perforation Discharge. 17. Volume of Liquid Per Foot of Distribution Piping (Table II): 18. Volume of Distribution Piping = = [Number of Perforated Laterals X Length of Laterals X (Volume of Liquid Per Foot of Distribution Piping) 7		062 612 112 morf 9 6 612 morf					
15. Select Perforation Discharge based on Table: 16. Flow Rate = Total Number of Perfs X Perforation Discharge. 17. Volume of Liquid Per Foot of Distribution Piping (Table II): 18. Volume of Distribution Piping = = [Number of Perforated Laterals X Length of Laterals X (Volume of Liquid Per Foot of Distribution Piping] 7		902 Jtt ÷ 112 peri = 8.0 jtt / peri		<u> </u>	***************************************		***************************************
15. Select Perforation Discharge based on Table: 16. Flow Rate = Total Number of Perfs X Perforation Discharge. 17. Volume of Liquid Per Foot of Distribution Piping (Table II): 18. Volume of Distribution Piping = 19. Inamber of Perforated Laterals X Length of Laterals X (Volume of Liquid Per Foot of Distribution Piping) 19. Minimum Delivered Volume = Volume of Distribution Piping X 4 10. A1 GPM per Perforation = 47 GPM 10. 170 Gallons/ft 1112 Perfs X 0.41 GPM per Perforation = 47 GPM 112 Perfs X 0.41 GPM per Perforation = 47 GPM 113 O.170 Gallons/ft 114 Volume of Distribution Piping = 115 Image: Cher establishments and MSTS with 1/8 inch perforations 116 Select Perforation	14.	Select Minimum Average Head: 1.0 ft	1 f00t			to 1/4 inc	h
Inch to 1/4 fisch perforation Steet Cher establishments and ASTS with 1/8 fisch perforations Steet Cher establishments and ASTS with 1/8 fisch perforations	45	0.44			*******		
112 Perfs X 0.41 GPM per Perforation = 47 GPM 17. Volume of Liquid Per Foot of Distribution Piping (Table II): 0.170 Gallons/ft 18. Volume of Distribution Piping = [Number of Perforated Laterals X Length of Laterals X (Volume of Liquid Per Foot of Distribution Piping) 7	15.	Select Perforation Discharge based on Table: U.41 GPM per Perf					h 3/16
112 Perfs X 0.41 GPM per Perforation = 47 GPM 17. Volume of Liquid Per Foot of Distribution Piping (Table II): 0.170 Gallons/ft 18. Volume of Distribution Piping =	16.	Flow Rate = Total Number of Perfs X Perforation Discharge.	S faat	Other estab	lishments a		h 1/8 inch
17. Volume of Liquid Per Foot of Distribution Piping (Table II): 18. Volume of Distribution Piping = = [Number of Perforated Laterals X Length of Laterals X (Volume of Liquid Per Foot of Distribution Piping) 7		112 Ports V 0.41 GPM per Perforation = 47 (<u></u>		<u>-</u>
18. Volume of Distribution Piping = = [Number of Perforated Laterals X Length of Laterals X (Volume of Liquid Per Foot of Distribution Piping] 7		112 rens x 0.41 orm per renoration - 47	34.14/				
= [Number of Perforated Laterals X Length of Laterals X (Volume of Liquid Per Foot of Distribution Piping] 7	17.	Volume of Liquid Per Foot of Distribution Piping (Table II): 0.170 G	allons.	/ft			
= [Number of Perforated Laterals X Length of Laterals X (Volume of Liquid in Liquid Per Foot of Distribution Piping] 7	18.	Volume of Distribution Piping =		Lag Poston		1_ 11	
Liquid Per Foot of Distribution Piping Pipe P		- I Number of Perforated Laterals V Length of Laterals V (Volume of		Mali	e in briefly	2 2 2 2 2 2	
7 X 46 ft X 0.170 gal/ft = 54.9 Gallons 19. Minimum Delivered Volume = Volume of Distribution Piping X 4 54.9 gals X 4 = 219.4 Gallons 10.045 1.25 0.078 1.5 0.110 2 0.170 3 0.380 4 0.661				YOU			KG 111
7 X 46 ft X 0.170 gal/ft = 54.9 Gallons Diameter (Gallons) 19. Minimum Delivered Volume = Volume of Distribution Piping X 4 54.9 gals X 4 = 219.4 Gallons 1.25 0.078 1.5 0.110 2 0.170 3 0.380 4 0.661		Eliquid Fel 100t of Distribution Fibring]		Di			
19. Minimum Delivered Volume = Volume of Distribution Piping X 4 54.9 gals X 4 = 219.4 Gallons (inches) (Galtons) 1.25 0.078 1.5 0.110 2 0.170 3 0.380 4 0.661		7 V 46 ft V 0 170 gal/ft - 54.9 G	allone	1	832 200		7 July 1987
19. Minimum Delivered Volume = Volume of Distribution Piping X 4 54.9 gals X 4 = 219.4 Gallons 1.25 0.078 1.5 0.110 2 0.170 3 0.380 4 0.661		, v 40 It v 0.170 gat/It - 34.7 ga	attons	100	36.00	410 00 333	91.0191E.
54.9 gals X 4 = 219.4 Gallons 1.25 0.078 1.5 0.110 2 0.170 3 0.380 4 0.661	19.	Minimum Delivered Volume = Volume of Distribution Piping X 4		11.00			
54.9 gals X 4 = 219.4 Gallons 1.5 0.110 2 0.170 3 0.380 4 0.661	.,,	This is a second of the second		ļ			
2 0.170 3 0.380 4 0.661		54.9 gals X 4 = 219.4 Gallons		·	***************************************		
3 0.380 4 0.661							
4 0.661				-	3		
Comments/Special Design Considerations:				-	4		
Comments/Special Design Considerations:				<u></u>			,
	Comm	ents/Special Design Considerations:					

Basic Pump Selection Design Worksheet

1. 1	PUMP CAPACITY			Project ID:						v 0	4.01.2020			
ł	Pumping to Gravity or Pressu													
A. I	f pumping to gravity enter the		GPM (10 - 45 gpm)											
B. I	f pumping to a pressurized dis	tribution system	1:		4	47.0 GPM								
C. I	Enter pump description:													
2. H	EAD REQUIREMENTS					l				Soil ti & po	eatment system int of discharge			
A. E	Elevation Difference	7	ft								\$05.80K			
t	petween pump and point of dis	scharge:	•			nlet pipe		Supply line						
В. П	Distribution Head Loss:	5	ft						Elevation difference					
c. <i>A</i>	Additional Head Loss:		ft (due to spe	cial equipmen	t, etc.)				********					
			•				Table I.Friction	on Loss i	n Plastic	Pine ne	r 100ff			
	oncolor to the state of the second of the se	ution Head	l Loss				Flow Rate		***************************************	ter (inch	······································			
-	avity Distribution = Of	***				-	(GPM)	1	1.25	1.5	2			
	essure Distribution ba lue on Pressure Distril			erage He	ad		10	9.1	3.1	1.3	0.3			
	Vinimum Average He		tribution	Head I	nee		12	12.8	4.3	1.8	0.4			
	1ft			ft			14	17.0 21.8	5.7 7.3	2.4 3.0	0.6 0.7			
_	2ft		61				18	2.110	9.1	3.8	0.9			
<u></u>	5ft		10	lft	<u> </u>	_]	20		11.1	4.6	1.1			
	a - 1 B; B; 4		1.				25	o visa ereele	16.8	6.9	1.7			
D. 1	. Supply Pipe Diameter:	2.0	in				30 35		23.5	9.7 12.9	2.4 3.2			
2	. Supply Pipe Length:	15	ft				40			16.5	4.1			
E. F	riction Loss in Plastic Pipe p	er 100ft from T	able I:				45	especial socie		20.5	5.0			
_							50 55	traktivá			6.1 7.3			
ŀ	riction Loss = 5.	44 ft per 1	00ft of pipe				60				8.6			
	etermine Equivalent Pipe Len						65				10.0			
	ischarge point.Estimate by a upply Pipe Length X 1.25 = Eq			igth for fitt	ing toss	•	70				11.4			
_				·			75 85		2011/12/2019	u ffan fylir	13.0			
Ĺ	15 ft X	1.25 =	18.8	ft			95	redit i se		MagNa area	16.4 20.1			
G . C	alculate Supply Friction Loss	by multiplying F	riction Loss	Per 100ft l	y the E	quivalen	t Pipe Length an	d divide b	y 100.	***************************************				
S	upply Friction Loss =													
	5.44 ft per 100ft	x (18.8	ft	÷	100	= 1.0	ft						
H. 7	otal Head requirement is the	sum of the <i>Elev</i>	ation Differ	ence + Dist	ribution	Head Lo	oss, + Additional H	lead Loss	+ Supply	Friction L	oss			
Γ	7.0 ft +	5.0	ft +			ft + [1.0 ft	· =	13.0	ft				
 3. Pl	JMP SELECTION													
A	pump must be selected to deli	iver at least	47.0	GPM w	ith at le	ast		13.0	feet	of total h	ead.			
Comm	nents:				. <u></u>									
	——————————————————————————————————————		 _	·										
		ı									1			
											- [

Pump Tank Design Worksheet (Demand Dose)

	DETERA	AINE TANK CAPACITY AND	DIMENSIONS					Project ID:				v 0-	4.01.2020
1.	Α.	Design Flow (Design Sum.	<i>1A)</i> :		750	 GPD	c.	Tank Use:		Dosing			
	В.	Min. required pump tank	capacity:		750	Gal	D.	Recommende	ed pump tank car	nacity:	10	00	Gal
L		min required pump can							- Famp tank ta				Joan
2.	Α.	Tank Manufacturer:	CEMSTO	DNE		В.	Tan	ık Model:		9551001			
	c.	Capacity from manufactu	ırer:	1	1070	Gallons				alculations are l different tank n			
	D.	Gallons per inch from ma	nufacturer:	3	32.0	Gallons	per i	nch	float or timer	settings. Contac	t designer if	change	s are
	E.	Liquid depth of tank from	n manufacturer:		32.0	inches			necessary.				
_]							
		te Volume to Cover Pump	(The inlet of the numn m	uet he at l	east 4-inc	hes from	the	hottom of the	numn tank 6-2	inches of water o	overing the p		
ľ	recomm		(The litter of the pump in	ust be at t	east 4°iiic	1162 11011	luie	porton or the	Pump tank & Z	inches of water c	overing the p	oump is	i
	(Pump a	and block height + 2 inches) X Gallons Per Inch		_					 ,			
	(12 in +	2 inches) X	32.0	Gallons	Per Inch		=	448	Gallons			
4	Minimu	um Delivered Volume = 4	X Volume of Distribution	Piping:		,							
	-Item 1	8 of the Pressure Distribut	ion or Item 11 of Non-lev	el		1	86	Gallons	(Minimum dose)		5.8	inches/c	iose
5	Calculat	e Maximum Pumpout Volu	ume (25% of Design Flow)										
l	Design F	flow: 7	50 GPD X	0.25	=	1	88	Gallons	(Maximum dose)	5.9	inches/c	iose
	Salacta	pumpout volume that mee	ets both Minimum and Ma	vimum:			87	Gallons					
		•		xmiuni.		L		Gallons		Volume of	f Liamid i	7	
l ′	Calculat	te <i>Doses Per Day =</i> Design F	187	gal =			.01	Doses		Pi			
۰	Calculat	<u> </u>	1.07					Doses		Pipe	Liguid		
l°		e Drainback:					7			Diameter	Per Foo	94.203	
	Α.	Diameter of Supply Pipe≈	:			2	inch	ies		(inches)	(Gallon:	400	
	В.	Length of Supply Pipe =				15	feet	:		1	0.045	_	i
	c.	Volume of Liquid Per Line	eal Foot of Pipe =		0.	170	Gall	ons/ft		1.25	0.078	_	
	D.	Drainback = Length of Su	pply Pipe X Volume of Lie	quid Per L	ineal Fool	t of Pipe	J			1.5	0.110		i
		15 ft X	0.170 gal/ft	=	2	.6	Gall	ons		2	0.170		
9.	Total Do	sing Volume = Delivered V	Colume plus Drainback		L		1			3	0.380		1
		187 gal +	2.6 gal =	1	90	Gallons			į	4	0.661		
10.	Minimun	n Alarm Volume = Depth of	alarm (2 or 3 inches) X g	allons per	inch of ta	nk			•				
		2 in X	32.0 gal/in	=	64	4.0	Gall	ons					
DE/	MAND DO	SE FLOAT SETTINGS											
11.	Calculat	e Float Separation Distanc	e using Dosing Volume .										
	Total Do	sing Volume / Gallons Per l	Inch										
		190 gal ÷	32.0	gal	/in =	5	.9	Inches					_,
12.	Measurin	ng from bottom of tank:	<u> </u>			L							ユ I
		to set Pump Off Float = P	ump + block height + 2 in	ches					Inches for Dose:	5.9 in	·	_	[[L]
		12 in +	2 in = 14	Inches					Alarm Depth	21.9 in			
В.	Distance	to set Pump On Float=Disi	tance to Set Pump-Off Flo	at + Floa	t Separat	ion Dista	nce		Pump On	19.9 in	64.0	Gal	
		14 in +	5.9	in =	2	20	Inch	es	Pump Off	14.0 in	190	Gal /	
c.	Distance	to set Alarm Float = Dista	ance to set Pump-On Floa	_ t_+ Alarm	Depth (2	2-3 inche	s)				448	5al	"
	İ	20 in +	2.0	in =	2	2	Inch	es				۲	┪╽╽

Septic System Management Plan for Above Grade Systems

The goal of a septic system is to protect human health and the environment by properly treating wastewater before returning it to the environment. Your septic system is designed to kill harmful organisms and remove pollutants before the water is recycled back into our lakes, streams and groundwater.

This **management plan** will identify the operation and maintenance activities necessary to ensure long-term performance of your septic system. Some of these activities must be performed by you, the homeowner. Other tasks must be performed by a licensed septic maintainer or service provider. However, it is **YOUR** responsibility to make sure all tasks get accomplished in a timely manner.

The University of Minnesota's Septic System Owner's Guide contains additional tips and recommendations designed to extend the effective life of your system and save you money over time.

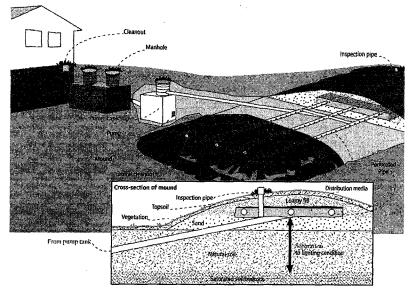
Proper septic system design, installation, operation and maintenance means safe and clean water!

Property Owner MILLE LACS BAND OF OJIBWE	Email
Property Address 30910 EAGLE FEATHER DR. HINCKLEY	Property ID 030430001
System Designer KEVIN HERWIG	Contact Info 320-241-7036
System Installer	Contact Info
Service Provider/Maintainer	Contact Info
Permitting Authority PINE COUNTY	Contact Info
Permit #	Date Inspected

Keep this Management Plan with your Septic System Owner's Guide. The Septic System Owner's Guide includes a folder to hold maintenance records including pumping, inspection and evaluation reports. Ask your septic professional to also:

- Attach permit information, designer drawings and as-built of your system, if they are available.
- Keep copies of all pumping records and other maintenance and repair invoices with this document.
- Review this document with your maintenance professional at each visit; discuss any changes in product use, activities, or water-use appliances.

For a copy of the Septic System Owner's Guide, visit www.bookstores.unn.edu and search for the word "septic" or call 800-322-8642.


For more information see http://septic.umn.edu

Version: August 2015

Septic System Management Plan for Above Grade Systems

Your Septic System

Septic System Specifics

System Type: I II III VIV* V* (Based on MN Rules Chapter 7080.2200 – 2400)	System is subject to operating permit* System uses UV disinfection unit*							
*Additional Management Plan required	Type of advanced treatment unit							
Dwelling Type	Well Construction							
Number of bedrooms: 4/ DESIGNED @5	Well depth (ft): >50'							
System capacity/ design flow (gpd): 750	□ Cased well Casing depth:							
Anticipated average daily flow (gpd): 600	□ Other (specify):							
Comments	Distance from septic (ft): 90							
Business?: OY ON What type?	Is the well on the design drawing? Y N							
Septic 7	Septic Tank							
☐ First tank Tank volume: 2500 gallons	□ Pump Tank 1000 gallons							
Does tank have two compartments? Y N	□ Effluent Pump make/model: GOULDS WE511H							
□ Second tank Tank volume: gallons	Pump capacity 50 GPM							
□ Tank is constructed of CONCRETE	TDH 13 Feet of head							
□ Effluent screen: Y N Alarm Y N	□ Alarm location HOME							
Soil Treatment Area (STA)								
Mound/At-Grade area (width x length): ft x ft Rock bed size (width x length): _20 _ ft x 48.1 _ft Location of additional STA: Type of distribution media: ROCK	✓ Inspection ports ✓ Cleanouts ✓ Surface water diversions Additional STA not available							

Septic System Management Plan for Above Grade Systems

Homeowner Management Tasks

These operation and maintenance activities are your responsibility. Chart on page 6 can help track your activities.

Your toilet is not a garbage can. Do not flush anything besides human waste and toilet paper. No wet wipes, cigarette butts, disposal diapers, used medicine, feminine products or other trash!

The system and septic tanks needs to be checked every ³⁶ months

Your service provider or pumper/maintainer should evaluate if your tank needs to be pumped more or less often.

Seasonally or several times per year

- Leaks. Check (listen, look) for leaks in toilets and dripping faucets. Repair leaks promptly.
- Soil treatment area. Regularly check for wet or spongy soil around your soil treatment area. If surfaced sewage or strong odors are not corrected by pumping the tank or fixing broken caps and leaks, call your service professional. *Untreated sewage may make humans and animals sick*. Keep bikes, snowmobiles and other traffic off and control borrowing animals.
- Alarms. Alarms signal when there is a problem; contact your service professional any time the alarm signals.
- Lint filter. If you have a lint filter, check for lint buildup and clean when necessary. If you do not have one, consider adding one after washing machine.
- Effluent screen: If you do not have one, consider having one installed the next time the tank is cleaned along with an alarm.

Annually

- Water usage rate. A water meter or another device can be used to monitor your average daily water use. Compare your water usage rate to the design flow of your system (listed on the next page). Contact your septic professional if your average daily flow over the course of a month exceeds 70% of the design flow for your system.
- Caps. Make sure that all caps and lids are intact and in place. Inspect for damaged caps at least every fall. Fix or replace damaged caps before winter to help prevent freezing issues.
- Water conditioning devices. See Page 5 for a list of devices. When possible, program the recharge frequency based on water demand (gallons) rather than time (days). Recharging too frequently may negatively impact your septic system. Consider updating to demand operation if your system currently uses time,
- Review your water usage rate. Review the Water Use Appliance chart on Page 5. Discuss any major changes with your service provider or pumper/maintainer.

During each visit by a service provider or pumper/maintainer

- Make sure that your service professional services the tank through the manhole. (NOT though a 4" or 6" diameter inspection port.)
- Ask how full your tank was with sludge and scum to determine if your service interval is appropriate.
- Ask your pumper/maintainer to accomplish the tasks listed on the Professional Tasks on Page 4.

Septic System Management Plan for Above Grade Systems

Professional Management Tasks

These are the operation and maintenance activities that a pumper/maintainer performs to help ensure long-term performance of your system. At each visit a written report/record must be provided to homeowner.

Plumbing/Source of Wastewater

- Review the Water Use Appliance Chart on Page 5 with homeowner.

 Discuss any changes in water use and the impact those changes may have on the septic system.
- Review water usage rates (if available) with homeowner.

Septic Tank/Pump Tanks

- *Manhole lid.* A riser is recommended if the lid is not accessible from the ground surface. Insulate the riser cover for frost protection.
- Liquid level. Check to make sure the tank is not leaking. The liquid level should be level with the bottom of the outlet pipe. (If the water level is below the bottom of the outlet pipe, the tank may not be watertight. If the water level is higher than the bottom of the outlet pipe of the tank, the effluent screen may need cleaning, or there may be ponding in the soil treatment area.)
- Inspection pipes. Replace damaged or missing pipes and caps.
- Baffles. Check to make sure they are in place and attached, and that inlet/outlet baffles are clear of buildup or obstructions.
- Effluent screen. Check to make sure it is in place; clean per manufacturer recommendation. Recommend retrofitted installation if one is not present.
- Alarm. Verify that the alarm works.
- Scum and sludge. Measure scum and sludge in each compartment of each septic and pump tank, pump if needed.

Pump

- Pump and controls. Check to make sure the pump and controls are operating correctly.
- Pump vault. Check to make sure it is in place; clean per manufacturer recommendations.
- Alarm. Verify that the alarm works.
- Drainback. Check to make sure it is draining properly.

•	Event counter or elapsed time meter. Check to see if there is an event counter or elapsed time	
	meter for the pump. If there is one or both, calculate the water usage rate and compare to the	
	anticipated use listed on Design and Page 2. Dose Volume: gallons: Pump run tim	ne:
	Minutes	

Soil Treatment Area

- Inspection pipes. Check to make sure they are properly capped. Replace caps and pipes that are damaged.
- Surfacing of effluent. Check for surfacing effluent or other signs of problems.
- Lateral flushing. Check lateral distribution; if cleanouts exist, flush and clean at recommended frequency.
- Vegetation Check to see that a good growth of vegetation is covering the system.

All other components – evaluate as listed here:

Septic System Management Plan for Above Grade Systems

Water-Use Appliances and Equipment in the Home

Appliance	Impacts on System	Management Tips					
Garbage disposal	 Uses additional water. Adds solids to the tank. Finely-ground solids may not settle. Unsettled solids can exit the tank and enter the soil treatment area. 	 Use of a garbage disposal is not recommended. Minimize garbage disposal use. Compost instead. To prevent solids from exiting the tank, have your tank pumped more frequently. Add an effluent screen to your tank. 					
Washing machine	 Washing several loads on one day uses a lot of water and may overload your system. Overloading your system may prevent solids from settling out in the tank. Unsettled solids can exit the tank and enter the soil treatment area. 	 Choose a front-loader or water-saving top-loader, these units use less water than older models. Limit the addition of extra solids to your tank by using liquid or easily biodegradable detergents. Limit use of bleach-based detergents and fabric softeners. Install a lint filter after the washer and an effluent screen to your tank Wash only full loads and think even – spread your laundry loads throughout the week. 					
Dishwasher	 Powdered and/or high-phosphorus detergents can negatively impact the performance of your tank and soil treatment area. New models promote "no scraping". They have a garbage disposal inside. 	 Use gel detergents. Powdered detergents may add solids to the tank. Use detergents that are low or no-phosphorus. Wash only full loads. Scrape your dishes anyways to keep undigested solids out of your septic system. 					
Grinder pump (in home)	Finely-ground solids may not settle. Unsettled solids can exit the tank and enter the soil treatment area.	 Expand septic tank capacity by a factor of 1.5. Include pump monitoring in your maintenance schedule to ensure that it is working properly. Add an effluent screen. 					
Large bathtub (whirlpool)	 Large volume of water may overload your system. Heavy use of bath oils and soaps can impact biological activity in your tank and soil treatment area. 	 Avoid using other water-use appliances at the same time. For example, don't wash clothes and take a bath at the same time. Use oils, soaps, and cleaners in the bath or shower sparingly. 					
Clean Water Uses	Impacts on System	Management Tips					
High-efficiency furnace	Drip may result in frozen pipes during cold weather.	Re-route water directly out of the house. Do not route furnace discharge to your septic system.					
Water softener Iron filter Reverse osmosis	 Salt in recharge water may affect system performance. Recharge water may hydraulically overload the system. 	 These sources produce water that is not sewage and should not go into your septic system. Reroute water from these sources to another outlet, such as a dry well, draintile or old drainfield. 					
Surface drainage Footing drains	Water from these sources will overload the system and is prohibited from entering septic system.	 When replacing, consider using a demand-based recharge vs. a time-based recharge. Check valves to ensure proper operation; have unit serviced per manufacturer directions 					

Septic System Management Plan for Above Grade Systems

Homeowner Maintenance Log

Track maintenance activities here for easy reference. See list of management tasks on pages 3 and 4.

Activity Date accomplished										
Check frequently:										
Leaks: check for plumbing leaks*										
Soil treatment area check for surfacing**										
Lint filter: check, clean if needed*										
Effluent screen (if owner-maintained)***										
Alarm**										
Check annually:		I	<u> </u>	L	I	L	L	·	i	<u></u>
Water usage rate (maximum gpd)										
Caps: inspect, replace if needed										
Water use appliances – review use										
Other:		:								
*Monthly		L	<u></u>	<u></u>	ļ	<u></u>	<u> </u>	<u></u>	<u> </u>	<u></u>
**Quarterly										
***Bi-Annually										
Notes:										
"As the owner of this SSTS, I understand the sewage treatment system on this prope this Management Plan are not met, I will necessary corrective actions. If I have a area for future use as a soil treatment s	erty, promp new	utiliz tly no system	ing th tify	he Mand the pe	agemen rmitti	t Plar ng aut	n. If chorit	requir y and	ements take	in
Property Owner Signature:	, <u></u>			·····		Date				
Management Plan Prepared By: KEVIN I	HERV	VIG				Certif	ication	₁ <i>3</i> 65	9	
Permitting Authority:		-								

©2015 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer. This material is available in alternative formats upon request. Contact the Water Resources Center, 612-624-9282. The Onsite Sewage Treatment Program is delivered by the University of Minnesota Extension Service and the University of Minnesota Water Resources Center.